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Supplemental Online Material for “Reconciling disparate 20th Century Indo-Pacific 

ocean temperature trends in the instrumental record” by A. Solomon and M. Newman 

 

 In this supplementary material we provide a detailed discussion of how the linear 

inverse model and optimal perturbation filter were constructed for the paper, as well as, a 

series of diagnostics10,11,17,25,26,27  to demonstrate the robustness of the results presented in 

the paper.  

 

1) Parameters used to construct the LIM 

 

The optimal perturbation filter has 5 free parameters; the truncation of the data in 

EOF space, the lag used to calculate the lag-covariance statistics (!!), the interval over 

which the growth of the optimal structure is maximized (!!), the time over which the 

filter is applied (!!), and the norm under which the propagator G is optimized. In addition, 

the time period used to construct the lag covariance statistics needs to be specified. For 

the SODA data we use the 50-year period between 1957-2006 to construct the LIM. For 

the SST datasets we use the 120-year common period of 1891-2010 to construct the LIM 

from each dataset.  

Prefiltering (truncation) in EOF space and the parameter !! are used to construct 

the LIM.  We use !! = 3 months for the lag-covariance statistics, similar to other 

studies10,11,17,25,26,27. For the LIM to be a valid approximation of the system’s dynamics it 

is necessary to demonstrate that it can reproduce observed lag-covariance statistics at 

much longer lags than !!, i.e. the tau-test17. The linearity of the system’s dynamics, and 

the validity of the LIM, is demonstrated by the similarity between LIM and observed lag-

covariance statistics at 9 and 18 months, (shown for the HadISST data in Supp. Fig. 2).  

The impact of the EOF truncation on the forecast skill of the LIM is demonstrated 

by sub-sampling the data record by sequentially removing one ten-year period, 

computing G for the remaining years, and then generating forecasts for the independent 

years. This procedure is repeated for the entire period. Forecast skill is then determined 

by comparing the local anomaly correlation between the cross-validated model 
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predictions and gridded untruncated verifications. The impact of EOF truncation for 

HadISST SSTs averaged in the NINO3.4 region (4°S-4°N,170°E-120°W) is shown in 

Supp. Fig. 3. It is seen that increasing the number of EOFs beyond 20 results in a 

marginal increase in skill for lags greater than 12 months. All LIMs in this paper are 

constructed with data that has been truncated to 20 EOFs. It is important to note that all 

trends use the untruncated data where the first 20 EOFs are unfiltered or filtered using the 

LIM. 

2) Parameters used to construct the optimal perturbation filter 

The optimal perturbation for SST-LIMs has typically been defined under the L2 norm 

(i.e., domain-mean squared amplitude), and we adopt this convention as well. The 

parameters !! and  !! are chosen to optimize the filter as follows.  Based on the maximum 

possible anomaly growth factor, sometimes called the ‘‘maximum amplification’’ (MA) 

curve (shown in Supp. Fig. 4a for HadISST), it is seen that the largest possible SST 

amplification occurs at 9 months, which would then seem to be a reasonable choice for 

!!. However, the evolution from the optimal to peak ENSO is not substantially different 

for shorter optimization times. For example, the 30-month evolution of EOF1 from the 

dominant initial conditions (Supp. Fig. 4b) for  !! = 9 months is similar to that for !! = 3 

and 6 months, and the optimal initial conditions (Supp. Fig 5) also display somewhat 

subtle differences. To determine which optimization time is most relevant to actual 

anomaly growth we look for the optimal that not only grows but is also excited by noise 

(since an initial condition which can grow but is less well forced would have less 

relevance). We thus determine growth “expectation values” as a function of !!, where the 

expectation values are calculated as the standard deviation of the projection of the 

optimals for !! = 3,6,9 on the noise and then weighted by the singular value. The 

integrated noise !(!) (i.e., forecast error) is defined from the LIM as  

!(!) =   ! ! −   ! 3 ! ! − 3       . 

The expectation values, shown in Supp. Fig. 6, peak at !! = 3, indicating that the most 

relevant optimal is for !! = 3; that is, although the !!(3) optimal doesn’t amplify quite 

as much as !!(6)  and !!(9) it is more forced by the noise.  
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To choose !!, we choose the time at which EOF1 decays to its initial value (from 

Supp. Fig. 3b). This time is at approximately 24 months for !! = 9, but for !! = 3− 6 it 

is a little shorter, ~21 months. 

 Sensitivity to the choices of !! and !! is illustrated in Supp. Fig. 7a, which 

shows the root mean square error (RMSE) of the residual as defined in eq. (4) minus the 

3-month forecast error [ RMSE(!− !(!)) ] as a function of EOF for HadISST for the 

1900-2010 time period (also shown for ERSST in Supp. Fig. 7b). RMSE(!− !(!))   is a 

measure of how much of the predictable ENSO variability explained by the LIM is 

removed by the filter. Supp. Fig. 7 shows RMSE for !! = 21,24,27 months with black, 

blue, and red markers, respectively. The largest impact of the filter is on the amplitude of 

EOF1. For example, for !! = 3 months and !! = 21 months the filtering reduces the 

RMSE of EOF1 by 73% while reducing the RMSE of EOF2 by less than 6%. The RMSE 

of EOF1 decreases for decreasing !!  and increasing !! , due to a somewhat larger 

projection of the optimal initial conditions on EOF1 as !! is decreased (Supp. Fig 5). 

It is important to note that the dominant initial conditions !!  have a little 

projection on EOF1. This projection is larger for  !! = 3 months than for  !! = 6 and 9 

months. This is an issue since a number of climate model projections of the response to 

an increase in greenhouse gases produce a warming pattern in the tropical Indo-Pacific 

that is “El Niño-like”32. This can cause a projection of the trend onto the optimal initial 

conditions, which may cause a bias in the filtered trends. We test this by comparing 

filtered trends and time series using  !! = 3,6,9 months (Supp. Figs. 8-15) and conclude 

that there is no detectable projection of a systematic trend on the optimals, but this is an 

issue that needs to be addressed when applying this filter to climate model simulations 

where there may be a significant projection of the response to external forcing on the 

optimal initial conditions estimated using SSTs. As discussed in ref. 34, using an EOF 

basis defined using three dimensional ocean temperatures can minimize this problem 

since this exploits the fact that ENSO variability has a three dimensional structure that is 

distinct from the response to external forcing. 

Since aliasing due to the large interannual variability on the relatively small long-
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term trend makes it impossible to estimate whether this is indeed the case for the datasets 

used in this paper (i.e., the motivation for this paper), we plot in Supp. Figs. 8-11 the 

sensitivity of the filtered cold tongue SSTs to !! and !! for all four datasets. First, it is 

interesting to note that the cold tongue SSTs are relatively insensitive to !!, i.e., the blue, 

green, and red lines are indistinguishable. Also note that for all of the datasets increasing 

!!  reduces the variability removed from each time series. To see what impact this 

sensitivity to !! has on the long-term trends, we plot in Supp. Figs. 12-15 the 1900-2010 

SST trends for all four datasets as a function of !! (with !! set to 21 months). The impact 

is negligible on the HadISST and KAPLAN trends. For the COBE and ERSST datasets, it 

is seen that the less efficient filtering as !! increases, increases the magnitude of the 

cooling trend in the equatorial Pacific.  

Based on the results presented in this supplementary material we use the values 

of  !! = 3 months and !! = 21 months to filter the SST datasets in the main body of the 

paper. LIMs constructed using lag-covariance statistics from different periods produce 

slightly different dominant evolving structures. It was found that !! = 18 months was 

optimal for the SODA 1958-2007 LIM rather than the !! = 21 months used with the 

1891-2010 SST LIMs. 

In this study we use the 1891-2010 common period to construct the LIM for each 

dataset. To justify this we need to demonstrate that the dynamical operator (or 

deterministic feedback matrix) in eq. (1) does not change appreciably over this period. 

This question was addressed in an earlier study11 where it was argued that the dynamical 

operator has not changed since 1871 but that the earlier part of the record cannot be used 

to estimate the deterministic feedback matrix because of errors due to sparsity of the data 

prior to 1948. A finding that motivated this conclusion was that the dominant optimal 

initial conditions for LIMs constructed with statistics from HadISST over the 1872-1947 

and 1949-2004 periods using a   !! = 8 months had a pattern correlation of 0.25. To 

investigate this for the datasets and periods used in this study we calculated the pattern 

correlation of dominant optimal initial conditions for the three periods 1891-1950, 1951-

2010, and 1891-2010 using a  !! = 3 months (correlations shown in Table 1). Similar to 

the earlier study the pattern correlation between the earlier and later periods is relatively 
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low for the HadISST data, 0.48 for the 60-year periods. But interestingly, this is not the 

case for the other three datasets, with correlations ranging from 0.70-0.78. In addition, we 

find that pattern correlations can be low due to uncertainties in estimates of dominant 

initial conditions from LIMs that use too little data. To illustrate this point we constructed 

1000 synthetic 120-year time series from the 1891-2010 HadISST LIM. Therefore, these 

time series had the same lag-covariance and noise statistics as the HadISST 1891-2010 

record. We divided each time series into two 60-year segments and constructed a LIM 

with the lag-covariance statistics for each segment. We then calculated the pattern 

correlation of the dominant optimal initial conditions for each 60-year LIM. It was found 

that 900 out of the 1000 time series had pattern correlations less than 0.86 and the mean 

of the correlations was 0.74. This procedure was repeated using 1000 240-year time 

series divided into two 120-year segments and it was found that 900 out of the 1000 time 

series had pattern correlations less than 0.93 and the mean of the correlations was 0.86. 

From this we surmise that, at least for the datasets other than HadISST, it cannot be 

concluded that the differences in the optimals for the 60-year periods are primarily due to 

errors in the statistics during the earlier part of the record. Clearly this is an issue, but 

based on the correlations shown in Table 1 we chose to construct the statistics using the 

full 120-year period. Further, we found that the results presented in the paper are not 

changed when the filter uses the evolution of the dominant optimal initial conditions from 

a LIM constructed with 1951-2010 statistics.  

As an additional test of the robustness of the filter we calculated the correlation 

between the optimal initial conditions for SST amplification over a 3-month interval and 

the optimal evolved SST structure 6 months later for the 1891-1950 and 1951-2010 

period separately. For both periods and for all four datasets the correlations range was 

0.68-0.78 indicating that the linear relationship between the initial and evolved structures 

expressed in the LIM is valid for both 60-year periods. 
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 HadISST ERSST COBE KAPLAN 

cr( 1891-1950 , 1891-2010 ) 0.60 0.82 0.90 0.87 

cr( 1951-2010 , 1891-2010 ) 0.94 0.92 0.94 0.89 

cr( 1891-1950 , 1951-2010 ) 0.48 0.75 0.78 0.70 

 
Table 1: Pattern correlations between dominant optimal initial conditions for LIMs 
constructed for the three periods 1891-1950, 1951-2010, and 1891-2010 using  !! = 3 
months. 
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Supplemental Figure 1: SODA nondimensional dominant optimal initial SST anomalies, 
regressed to ocean temperature structure and surface wind stress anomalies, for τe equal 
to 3 months. Contour interval equal to 0.2. A) At 5m. B) Along the equator. Thick blue 
contour marks the depth of the climate mean 20°C isotherm. C) At 160°W.  
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Supplemental Figure 2: Lag-covariance using HadISST seasonal mean 1891-2010, in 
units of °C2. A) Observed 9-month. B) LIM 9-month. C) Observed 18-month. D) LIM 
18-month.  Contour interval is 0.02 °C2. 
 	  

A) OBS 9 month lag covariance 
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Supplemental Figure 3: Cross-validated forecast skill of HadISST (1891-2010) seasonal 
mean SSTs averaged over the NINO3.4 region (5°S–5°N, 170°W–120°W) as a function 
of EOF truncation for LIM with !! = 3 months. 
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Supplemental Figure 4: A) The largest SST amplification possible as a function of lag--
the maximum amplification (MA) curve, determined by a singular value decomposition 
of G under the L2 norm of SST. B) Projection of first right singular vector on EOF1 for 
τe=3,6,9 months and forecast for 3-30 months, in units of °C.	  Calculated using seasonal 
mean HadISST SSTs over the 1891-2010 period.  
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Supplementary Figure 5: Optimal initial conditions (nondimensional), constructed with 
statistics from 1891-2010 HadISST SSTs. (A) !! = ! months. (B) !! = ! months. (C) 
!! = ! months. 

Optimal Initial Conditions: tauE = 3 months
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Supplementary Figure 6: Expectation values as a function of !!, using HadISST 1891-
2010 seasonal mean SSTs. 
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Supplemental Figure 7: A) RMS of filtered data minus forecast error,  !"#(!(!!)−
!(!)) where the filter removes the evolution of the first right singular vector for τe = 
3,6,9 months and forecast for 21,24,27 months (shown with black, blue, red, respectively) 
as a function of EOF, in units of °C. For reference, the unfiltered RMSE for EOF1 = 
14.3°C and EOF2 = 9.4°C. Calculated using seasonal mean HadISST SSTs over the 
1900-2010 period. B) Same as A) for ERSST.  
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Supplemental Figure 8: HadISST seasonal mean 1891-2010 cold tongue SSTs (defined 
as the average over 4°N-4°S, 170°E-70°W) unfiltered (black), filtered !! = !" months 
(green), filtered !! = !" months (blue), filtered !! = !" months (red), in units of °C. 
(A) !! = ! months. (B) !! = ! months. (C) !! = ! months. 
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Supplemental Figure 9: Same as Supp. Fig. 8 for ERSST. 

	  

ERSST 
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Supplemental Figure 10: Same as Supp. Fig. 8 for KAPLAN. 

KAPLAN  
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Supplemental Figure 11: Same as Supp. Fig. 8 for COBE. 
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Supplemental Figure 12: HadISST 1900-2010 cold tongue SST trend for !! = !" 
months, in units of °C/100 years. (A) !! = ! months. (B) !! = ! months. (C) !! = ! 
months. 
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Supplemental Figure 13: Same as Supp. Fig. 12 for ERSST SSTs. 
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Supplemental Figure 14: Same as Supp. Fig. 12 for KAPLAN SSTs. 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

KAPLAN 1900-2010 SST Trend 
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Supplemental Figure 15: Same as Supp. Fig. 12 for COBE SSTs. 

COBE 1900-2010 SST Trend 


